1b. Guide for Excel solver

Input for Excel Solver

Step 1 –

Write down the variables in one column and values in the next column. Let the values be 0 initially. Similarly input the values of P_{load} which are already given.

Step 2 –

Write the objective function which is to minimize the cost. The objective function is the total cost cell in the excel file.

Step 3 –

The constraints are already included the excel sheet. The lower bound and upper bound for theta should be kept as -3.14 to 3.14 radians. The lower bound of generation capacity is 0 and there is no upper bound given. The susceptance matrix has all the values needed for power flow calculations. The power flow limit in line 1-2 is also included with respective reactance.

Running Excel solver

Select Data (from top bar) => Solver. (Top right corner)

Step 1 - Set Objective – Select the cell where objective function has been written down.

Step 2 - To: Min

Step 3 - By changing variable cells: Select the whole column containing values of the variables p1, p2, p3, ϑ_1 , ϑ_2 and ϑ_3

Step 4 - Subject to constraints: select 'Add'

For Cell reference select the constraint equation cell, select appropriate equality/inequality sign, for Constraint select the cell with constraint value.

•	
	×
Co <u>n</u> straint:	
± = ∨ =\$D\$12	<u>1</u>
Add	<u>C</u> ancel
Equality/Inequali	ty
0 =	850
	Constraint: Constraint: Constraint: Constraint: SDS12 Add Equality/Inequalit 0 =

Step 5 - Do not select the option - Make unconstrained variables non-negative

Step 6 - Select a solving method = GRG nonlinear or Simplex LP depending upon the objective function

Step 7 - Select 'Solve'